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Copyright © 2013 Andrea Tarozzi et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A wide variety of acute and chronic neurodegenerative diseases, including ischemic/traumatic brain injury, Alzheimer’s disease,
and Parkinson’s disease, share common characteristics such as oxidative stress,misfolded proteins, excitotoxicity, inflammation, and
neuronal loss. As no drugs are available to prevent the progression of these neurological disorders, intervention strategies using
phytochemicals have been proposed as an alternative form of treatment. Among phytochemicals, isothiocyanate sulforaphane,
derived from the hydrolysis of the glucosinolate glucoraphanin mainly present in Brassica vegetables, has demonstrated
neuroprotective effects in several in vitro and in vivo studies. In particular, evidence suggests that sulforaphane beneficial effects
could bemainly ascribed to its peculiar ability to activate the Nrf2/ARE pathway.Therefore, sulforaphane appears to be a promising
compound with neuroprotective properties that may play an important role in preventing neurodegeneration.

1. Introduction

Acute and chronic neurodegenerative diseases, including
stroke, traumatic brain injury (TBI), Alzheimer’s disease
(AD), and Parkinson’s disease (PD), are illnesses associated
with high morbidity and mortality, and few or no effective
options are available for their treatment [1, 2]. These diseases
result in acute, as well as gradual and progressive neurode-
generation, leading to brain dysfunction and neuronal death.
Although molecular mechanisms involved in the pathogen-
esis of acute and chronic neurodegenerative diseases remain
elusive, oxidative stress, misfolding, aggregation, accumula-
tion of proteins, perturbed Ca2+ homeostasis, excitotoxicity,
inflammation, and apoptosis have been implicated as possible
causes of neurodegeneration in the previously mentioned
neurological disorders [3, 4]. In addition, recent studies
demonstrated that acute brain injuries are also environmental
risk factors associated with chronic neurodegenerative dis-
eases [5–7].

In the last few years, there has been a growing inter-
est in a number of pharmacological approaches aimed at

preventing and counteracting the neuronal dysfunction and
death associated with neurodegenerative diseases. However,
while enormous efforts have been made to identify agents
that could be used to alleviate debilitating neurodegenerative
disorders, a source of potentially beneficial agents, namely,
phytochemicals, would appear to have significant benefits
in counteracting neurodegenerative diseases. Phytochemicals
have long been recognized as exerting different biological
effects, including antioxidant, antiallergic, antiinflammatory,
antiviral, antiproliferative, and anticarcinogenic effects [8–
10]. Considering that these age-related neurological disorders
are multifactorial and that no drugs are available to stop their
progression, intervention strategies using phytochemicals
have been proposed as an alternative form of treatment
for their prevention. Among phytochemicals, sulforaphane
(isothiocyanato-4-(methylsulfinyl)-butane) (SF) has been
demonstrated to have neuroprotective effects in several
experimental paradigms. Reports in the literature have shown
a pleiotropic role of this natural compound, thanks to its
ability to address different targets and to modulate different
pathways in neuronal/glial cells.
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In this review, we will discuss themost recent experimen-
tal evidence on the role of SF in counteracting brain oxidative
stress in both acute and chronic neurodegenerative diseases.
SF bioavailability is also considered, since it is a fundamental
aspect in the evaluation of the “in vivo” bioactivity of a
nutritional compound.

2. Sulforaphane Bioavailability

Various Brassica vegetables and especially broccoli contain
glucoraphanin. Following cutting or chewing, it is hydrolyzed
into the corresponding isothiocyanate SF either by the plant
thioglucosidase myrosinase or by bacterial thioglucosidases
in the colon [11].

Because of its lipophilicity [12] and molecular size, SF
is likely to passively diffuse into the enterocytes [13]. After
absorption, SF is conjugated with glutathione (SF-GSH) by
glutathione-S-transferase (GST) leading to maintenance of a
concentration gradient and facilitating a fast passive absorp-
tion into the cell [14]. It is metabolized via the mercapturic
acid pathway, producing predominantly cysteinylglycine (SF-
CG), cysteine (SF-Cys), and N-acetyl-cysteine (SF-NAC)
conjugates that are excreted in the urine [15].

Pharmacokinetic studies in both humans and animals
showed that the plasma concentration of SF and its metabo-
lites increased rapidly, reaching a maximum between 1 and
3 h after administration of either SF, glucosinolate, or broccoli
[16–21]. In particular, Veeranki and colleagues [21] reported
the ability of SF and itsmetabolites to reach different tissues in
the gastrointestinal and genitourinary tracts and other organs
such as liver, pancreas, lung, and heart, in vastly different
concentrations and that bioactivity, in terms of induction
of cytoprotective phase II enzymes, may differ significantly
among organs. Both plasma and tissue levels of these SF
metabolites are rapidly eliminated through urinary excretion
within 12–24 h reflecting the rapid elimination of SF. The in
vivo bioactivity of each SFmetabolite is still unclear, although
many in vitro studies have shown the ability of SF-Cys, and
SF-NACmetabolites to exert some bioactivity [22–24].These
data suggest the hypothesis that repeated consumption of
SF or cruciferous vegetables is required to maintain the SF
metabolite concentration in tissues.

Interestingly, more recent SF bioavailability studies
in human subjects consuming broccoli showed its bio-
conversion into isothiocyanate erucin (isothiocyanato-4-
(methylthio)-butane) (ER), a sulfide analog [25, 26].Whether
this conversion from SF to ER is important for the health pro-
moting effects of glucosinolate still remains to be determined
although some reports provide a glimpse into the possibility
of differing activities between these two isothiocyanates [27–
29].

In order to exert protective effects towards neurode-
generative disorders or improve brain function, SF must
traverse the blood-brain barrier (BBB) and accumulate in the
central nervous system (CNS). As reported in the following
sections of this review, various studies in animal models of
neurodegeneration suggest the ability of SF to reach CNS
and to display protective effects at this level. In this context,
Jazwa et al. [30] demonstrated in mice that after SF gavage,

SF is able to cross the BBB and to accumulate in cerebral
tissues such as the ventral midbrain and striatum, with a
maximum increase and disappearance after 15min and 2 h,
respectively. Interestingly, Clarke et al. [19] also detected SF-
GSH, SF-Cys and SF-NAC metabolites, but not SF alone, in
the CNS in a similar experimental in vivo model after 2 h
and 6 h. However, the authors suggest that low levels of the
various SF metabolites recorded in the CNS indicate their
poor ability to cross the BBB.These results show the ability of
SF to quickly reach the CNS and the potential contribution
of SF metabolites to prolong the presence of SF at this level
because they are unstable under physiological conditions and
readily dissociate back to SF [21, 30].

3. Protective Effects of Sulforaphane
against Oxidative Stress

Oxidative stress results from an imbalance of pro-
oxidant/antioxidant homeostasis that leads to an abnormal
production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS). The main ROS/RNS involved in
neurodegeneration are superoxide anion radical (O

2

∙−),
hydrogen peroxide (H

2
O
2
), the highly reactive hydroxyl

radical (∙OH), and nitric oxide (NO) that can react with
superoxide anion to produce peroxynitrite [31]. At high levels,
ROS can react with different cell molecules, causing damage
to DNA, lipids, and proteins and modulate intracellular
signaling pathways, leading to cellular degeneration and
apoptosis. ROS can also initiate proinflammatory pathways,
further exacerbating the deleterious oxidized environment.
The brain is particularly vulnerable to oxidative stress
because of its high oxygen consumption, high content of
oxidizable polyunsatured fatty acids, and low antioxidant
defense capacities especially in aging brains [32–34].
Oxidative stress is involved in many neurodegenerative
diseases and is a proposed mechanism for age-related
degenerative processes as a whole [35, 36]. Numerous studies
have provided compelling evidence that oxidative stress is
an important causative factor in PD [2, 37–40], AD [41–43],
amyotrophic lateral sclerosis (ALS) [44, 45], and multiple
sclerosis (MS) [46, 47].

Cells possess a complex network of nonenzymatic and
enzymatic components to counteract oxidative stress. GSH
is the major nonenzymatic regulator of intracellular redox
homeostasis. On the other hand, enzymatic antioxidants
include glutathione S-transferase (GST), glutathione reduc-
tase (GR), glutathione peroxidase (GPx), NAD(P)H-quinone
oxidoreductase 1 (NQO1), thioredoxin reductase (TR), heme
oxygenase 1 (HO1), peroxiredoxins, and many others. These
enzymes are now recognized as primary defense mecha-
nisms against many degenerative and chronic disease con-
ditions [48]. These antioxidants and cytoprotective enzymes
are regulated by a common mechanism that involves two
proteins: nuclear factor erythroid 2-related factor 2 (Nrf2)
and Kelch-like-ECH-associated protein 1 (Keap1) [49, 50].
Under basal conditions, Nrf2 is sequestered in the cyto-
plasm by its repressor protein Keap1 [51]. Keap1 contains
several reactive cysteine residues that serve as sensors of
the intracellular redox state. Nrf2 is released from Keap1
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upon oxidative or covalent modification of thiols in some
of these cysteine residues. Nrf2 translocates to the nucleus
where it heterodimerizes with small Maf proteins before
binding to the antioxidant responsive element (ARE) [35, 52]
within the promoter regions of many cytoprotective genes
[36]. In addition, Nrf2 has a key role against inflammation
thanks to its ability to antagonize the transcription factor
nuclear factor-𝜅B (NF-𝜅B) which regulates the expression of
inflammatory genes [37].

ARE induction by chemical activators has been shown to
protect neuronal cell lines against various oxidative damages
induced by dopamine, hydrogen peroxide (H

2
O
2
), and glu-

tamate [38–40]. SF has been demonstrated to increase many
ARE-dependent antioxidant enzymes in different cell systems
[41–43], such as GR, GPx, glutaredoxin (GLRX), thioredoxin
(TX), TR, HO1, andNQO1. It has been shown that SF directly
interacts with Keap1 by covalent binding to its thiol groups
[44].

Negi et al. [45] demonstrated that SF increased the
expression of Nrf2 and of downstream targets HO-1 and
NQO-1 in Neuro2a cells and the sciatic nerve of diabetic
animals. SFwas also effective in counteracting oxidative stress
induced by antipsychotic drugs in human neuroblastoma
SK-N-SH cells, increasing GSH levels and inducing NQO1
activity [46].

Sulforaphane prevented oxidative stress-induced cytotox-
icity in rat striatal cultures by raising the intracellular GSH
content via an increase in 𝛾-GCS expression induced by
the activation of the Nrf2-antioxidant responsive element
pathway [47].

It has also been observed that oxidative stress can inac-
tivate peroxiredoxins, an important family of cysteine-based
antioxidant enzymes that exert neuroprotective effects in sev-
eral models of neurodegeneration [48, 53–55]. Interestingly,
in both neurons and glia, SF treatment upregulates sulfire-
doxin, an enzyme responsible for reducing hyperoxidized
peroxiredoxins [56]. SF pretreatment also leads to attenuation
of the tetrahydrobiopterin (BH4) induced ROS production
thanks to the increase in mRNA levels and enzymatic activity
of NQO1 in DAergic cell lines CATH.a and SK-N-BE(2)C
[57].

Kraft et al. [58] demonstrated the importance of ARE
activation in astrocytes of a mixed primary culture system.
They observed that SF induced an ARE-mediated genetic
response that is highly selective for astrocytes over neurons
and conveys neuroprotection from oxidative insults initiated
by H
2
O
2
or nonexcitotoxic glutamate toxicity. Innamorato et

al. [59] observed a direct association between the protective
effect of SF against oxidative stress induced by lipopolysac-
charide with HO-1 induction in BV2 microglial cells.

Oxidative stress induces Ca2+-dependent opening of the
mitochondrial inner membrane permeability transition pore
(PTP), causing bioenergetic failure and subsequent death in
different cell models, including those related to acute brain
injury [60–62]. Intraperitoneal injection of rats with a non-
toxic level of SF resulted in resistance of isolated nonsynaptic
brain mitochondria to peroxide-induced PTP opening [63],
and this could contribute to the neuroprotection observed
with SF.

BBB damage following oxidative stress has been exten-
sively investigated [64]. Postinjury induction of Nrf2-driven
genes by SF treatment attenuated the loss of endothelial cells
and tight junction proteins and reduced BBB permeability
and cerebral edema [65]. Another study demonstrated that SF
administration reduced BBB permeability in a rat subarach-
noid hemorrhage model likely through the antioxidative
effects of the activated Nrf2-ARE pathway [66].

Less attention has been focused on oxidative damage at
the blood-cerebrospinal fluid (CSF) barrier (BCSFB) located
at the choroid plexus (CP) epithelium. Even modest changes
in the CPs may have a marked impact on the brain. For
example, changes in CP function have been implicated
in Alzheimer’s disease [67]. A study by Xiang et al. [68]
demonstrated that SF can protect the BCSFB in vitro from
damage caused by H

2
O
2
and reduced H

2
O
2
-induced cell

death in primary CP epithelial cells and a CP cell line Z310.
Summarizing, the observed protective effects of SF

against brain oxidative stress are mainly associated with
Nrf2 activation and the resulting upregulation of antioxidant
cytoprotective proteins and elevation of GSH (Figure 1).

4. Protective Effects of Sulforaphane
against Acute Neurodegeneration

4.1. Ischemic Brain Injury. The pathophysiology of ischemic
brain injury involves various biochemical mechanisms, such
as glutamate-mediated excitotoxicity, the generation of ROS,
apoptosis, and inflammation [69]. In adults, brain ischemic
insults typically result from stroke or cardiac arrest, while
in infants, cerebral ischemia is mediated by complications
during labor and delivery, resulting in neonatal hypoxic-
ischemic encephalopathy. In both groups, restoring blood
flow to the ischemic brain is essential to salvage neurons.
However, reperfusion itself causes additional and substantial
brain damage referred to as “reperfusion injury.”

In a neonatal hypoxia/ischemia brain injury model, Ping
et al. [70] observed that SF significantly increased Nrf2
and HO-1 expression which was accompanied by reduced
infarct volume. In particular, SF treatment reduced the
number of apoptotic neurons, activated macroglia, and some
oxidative parameters such as the amount of 8-hydroxy-
2-deoxyguanosine and MDA level. In a similar model of
ischemia/reperfusion induced by either oxygen and glucose
deprivation or hemin in immature mouse hippocampal
neurons, SF treatment activated the ARE/Nrf2 pathway of
antioxidant defenses and protected immature neurons from
delayed cell death [71]. Zhao et al. [69] demonstrated that
delayed administration of a single dose of SF significantly
decreased cerebral infarct volume in rats following focal
ischemia. Moreover, in rat cortical astrocytes, SF treatment
before or after oxygen and glucose deprivation signifi-
cantly reduced cell death, stimulating the Nrf2 pathway of
antioxidant gene expression [72]. In contrast to these data,
Porritt et al. [73] showed that SF treatment initiated after
photothrombosis-induced permanent cerebral ischemia in
mice did not interfere with key cellular mechanisms involved
in tissue damage.The authors suggest that the small volumeof
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Figure 1: Proposed mechanism of neuroprotective effects provided by SF through Keap1/Nrf2 transcriptional activation of the antioxidant
system. Adapted from [124].

infarcted cortical tissue resulting from the photothrombosis
injury might result in the generation of relatively smaller
amounts of ROS and may explain why they did not observe
any neuroprotection after SF administration. In addition,
Srivastava et al. [74] recorded that the pretreatment of
rats with SF decreased the nuclear accumulation of Nrf2
following cerebral ischemia/reperfusion injury. On this topic,
the authors speculate that rapid accumulation of SF in the
brain and subsequent upregulation of Nrf2 and antioxidant
enzymes may reduce the need for the later adaptive increase
in Nrf2 expression following stroke.

These lines of evidence indicate that SF may counteract
ischemia/reperfusion due to its ability to modulate Nrf2 and
intracellular redox signaling.

4.2. Traumatic Brain Injury. Traumatic brain injury (TBI) is
defined as damage to the brain caused by externalmechanical
force [75]. Survivors of TBI are leftwith long-termdisabilities,
and even a mild TBI can leave people with cognitive impair-
ments, difficulty in concentrating, headaches, and fatigue
[76]. TBI is a complex disease process [77] that results in early
phase of mechanical damage of brain tissue and a secondary
phase of cellular and molecular events that cause oxidative
damage and brain cell death [78, 79]. Despite advances in
prevention measures, surgical, and diagnostic techniques, no
pharmacological treatment has so far been found to confer
neuroprotection by targeting secondary injury mechanisms
[76].

Recent studies in a rat model of TBI showed that postin-
jury administration of SF reduces the BBB impairment and

cerebral edema after TBI [65, 80]. In particular, Zhao et al.
[80] showed that SF attenuated aquaporin-4 (AQP4) channel
loss in the injury core and further increased AQP4 protein
levels in the penumbra region at 24 h and 3 days following
TBI. In contrast to the early increase of AQP4 levels, the
decrease in cerebral edema was observed only at 3 days,
confirming the important role of AQP4 channels to clear the
water in excess and to maintain the brain water homeostasis
[81]. However, the authors suggest that the observed SF
neuroprotective effectmay be due to a combination ofmecha-
nisms that include decreasedBBBpermeability, enhanced cell
survival, and/or increasedAQP4 channel levels. In particular,
the restoration of AQP4 channel activity prevented the
impaired clearance of extracellular potassium with neuronal
depolarization and glutamate release. It should be noted that
the glutamate release is involved in an important sequel of
CNS injury [80]. In the same rat model of TBI, Zhao et
al. [65] demonstrated that postinjury administration of SF
preserved BBB function through the reduction of endothelial
cell markers and tight junction protein loss. These protective
effects were mediated by the activity of Nrf2. In particular, SF
increased the expression of Nrf2-driven cytoprotective genes
such as GST𝛼3, GPx, and HO-1 in the parietal cortex and
brainmicrovessels. More recent papers confirmed these find-
ings in both rat and mice models of TBI [82]. Interestingly,
Dash et al. [83] showed that in addition to vascular protec-
tion of SF, postinjury SF treatment preserved neurological
function in injured animals. This improvement was demon-
strated by enhanced learning and memory and by improved
performance in a workingmemory task.The authors propose
that the ability of SF to improve the hippocampal- and
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prefrontal cortex-dependent cognitive function could be
ascribed to its ability to protect the neurons and other cell
types of the neurovascular unit from the oxidative damage
elicited by TBI. Taken together, these findings suggest that
SF may protect against the various pathophysiological con-
sequences of TBI and other neurological traumatic injuries.
On this topic, a recent study demonstrated that SF provides
neuroprotective effects in the spinal cord after contusive
injury [84].

5. Protective Effects of Sulforaphane against
Chronic Neurodegeneration

5.1. Alzheimer’s Disease. Alzheimer’s disease (AD) is the
most common neurodegenerative disease that accounts for
most cases of dementia experienced by older people and
is characterized by a progressive decline in memory and
impairment of at least one other cognitive function [85].

This neurodegenerative disease is characterized by the
accumulation of amyloid beta (A𝛽) peptides that result in
oxidative damage, inflammation and increased intracellular
calcium levels [86, 87]. Two major hallmarks of AD are the
extracellular aggregation of A𝛽 peptides and the intracel-
lular precipitation/aggregation of hyperphosphorylated Tau
(forming neurofibrillary tangles) protein [87]. In particular,
A𝛽 1–40 and A𝛽 1–42 peptides, produced by the cleavage
of the precursor protein, can exist in multiple aggregation
forms, including soluble oligomers or protofibrils, and insol-
uble fibrils, which are responsible for various pathological
effects [88, 89].

Several studies showed that increased oxidative stress, the
impaired protein-folding function of the endoplasmatic retic-
ulum, and deficient proteasome- and autophagic-mediated
clearance of damaged proteins accelerated the accumulation
of A𝛽 peptides and Tau protein in AD [90, 91].

In this context, Kwak et al. [92] demonstrated that the
neuroprotective effects of SF against oxidative stress, in terms
of protein carbonyl formation and cytotoxicity elicited by
hydrogen peroxide, could be ascribed to its ability to induce
proteasome expression in murine neuroblastoma Neuro2A
cells. In similar cellular models, Park et al. [93] confirmed
the ability of SF to enhance the proteasome activities and to
protect the neuronal cells from A𝛽1–42-mediated cytoxicity.
More recent studies reported that SF induced the expression
of heat shock protein 27, demonstrating that SF-stimulated
proteasome activity may contribute to cytoprotection [94].
These data suggest that induction of proteasome by SF may
facilitate the clearance of the A𝛽1–42 peptides and lead to
the improvement of protein misfolding in AD. Kim et al.
[95] investigated the potential neuroprotective effects of SF
in an A𝛽1–40 peptide-induced AD acute mouse model. In
particular, they recorded the ability of SF to ameliorate the
cognitive function impairment although it did not directly
interact with A𝛽. These findings reinforce the indirect neu-
roprotective effects of SF against A𝛽 toxicity.

5.2. Parkinson’s Disease. Parkinson’s disease (PD) is an age-
related neurodegenerative disease with progressive loss of

dopaminergic (DA) neurons in the substantia nigra pars
compacta and with accumulation of neuronal inclusions
known as Lewy bodies [96].The exact etiology of PD remains
to be fully elucidated, but the most reliable theories propose
either an environmental [97, 98] or a genetic [99] origin, or a
combination of both. Genetic studies have demonstrated that
𝛼-synuclein protein, a principal component of Lewy body
inclusions [100], is a key participant in the pathogenesis of
this disorder [101–103]. The exact biological function of 𝛼-
synuclein and the mechanism by which mutations in this
gene lead to neuron loss are still not clear, although it has been
observed that an excess of 𝛼-synuclein protein can cause DA
neuron loss [104].

Overwhelming evidence indicates that oxidative damage
induced by ROS participates in the progression of DA neu-
rons. In particular, the metabolism of dopamine (DA) might
be responsible for the high basal levels of oxidative stress in
the SN. Autooxidation of dopamine leads to the formation
of neurotoxic species such as electrophilic DA quinone and
ROS including superoxide anion (O

2

∙) and H
2
O
2
[105]. DA

quinone is also thought to cause mitochondrial dysfunction
[106] and to mediate 𝛼-synuclein-associated neurotoxicity in
PD by covalently modifying 𝛼-synuclein monomer [107] and
by stabilizing the toxic protofibrillar 𝛼-synuclein [108].

Using a Drosophilamodel of 𝛼-synucleinopathy, Trinh et
al. [109] observed that the neuronal death accompanying 𝛼-
synuclein expression is enhanced by loss-of-function muta-
tions in genes involved in the phase II detoxification pathway,
specifically, glutathione metabolism. This neuronal loss can
be overcome by pharmacological inducers, including SF, that
increase glutathione synthesis or glutathione conjugation
activity. They also observed similar neuroprotective effects
of SF in Drosophila parkin mutants, another loss-of-function
model of PD.

Several in vitro studies showed that SF was able to
significantly reduce DA quinone levels in dopaminergic
cell lines, such as CATH.a and SK-N-BE(2)C, as well
as in mesencephalic dopaminergic neurons, evoked by 6-
hydroxydopamine (6-OHDA) and BH4 [110]. In particular,
Han et al. [57] demonstrated that SF can protect dopamin-
ergic cells from the cytotoxicity of 6-OHDA and BH4 by
removal of intracellular DA quinone, because NQO1 enzyme
activity and mRNA level are increased by SF treatment and
quinone-modified proteins are decreased.

In addition, DA quinone may yield neurotoxic species
following its reaction with cellular thiols to form the 5-S-
cysteinyl-dopamine (CysDA) [111–113]. CysDA adducts have
been reported in human brain tissue and are elevated in
the brains of patients suffering from PD [114]. We have
demonstrated that SF is able to protect primary cortical
neurons against CysDA-induced injury. In particular, we
found that the protection exerted by SF against this neuro-
toxin is linked to the activation of ERK1/2, to the associated
release of Nrf2 from Keap1, and to a subsequent increase in
the expression and activity of specific detoxifying phase II
enzymes [115]. Moreover, we demonstrated that SF prevented
the dopaminergic-like neuroblastoma SH-SY5Y cell death,
in terms of apoptosis and necrosis, induced by oxidant
compounds, such as H

2
O
2
and 6-OHDA, by its abilities
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Sham 6-OHDA SF + 6-OHDA

Figure 2: SF prevents 6-OHDA-induced ROS formation in SH-SY5Y cells. Representative images of SH-SY5Y cells incubated with SF
for 24 h and then treated with 6-OHDA for 3 h. At the end of incubation, ROS formation was determined by fluorescence probe, 2󸀠,7󸀠-
dichlorofluorescein-diacetate (DCFH-DA). Scale bar: 100 𝜇m.

to increase endogenous GSH, enzymes involved in GSH
metabolism including GST and GR, and to normalize the
intracellular redox status (Figure 2) [116]. Interestingly, we
recorded similar in vitro neuroprotective effects also with
the erucin generated by bioconversion of the SF suggesting
a neuroprotective role of SF metabolites in PD [117].

Deng et al. [118] observed that SF inhibited 6-OHDA-
induced cytotoxicity in SH-SY5Y cells through increas-
ing Nrf2 nuclear translocation and HO-1 expression in a
PI3 K/Akt-dependent manner. Further, other authors con-
firmed that Nrf2 activation by SF may play an important
role in DA neuron protection against 6-OHDA-induced
toxicity in rat organotypical nigrostriatal cocultures [119].
As regards in vivo neurodegeneration models, Jazwa et
al. [30] demonstrated that SF induced an Nrf2-dependent
phase II response in the basal ganglia and protected against
nigral dopaminergic cell death, astrogliosis, and microgliosis
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse
model of PD. Further, we reported the ability of SF to exert
neuroprotective effects on DA neurons in 6-OHDA-lesioned
mice. In particular, these effectsmay be attributed to SF ability
to enhance GSH levels and its dependent enzymes, including
GST and GR, and to modulate neuronal survival pathways,
such as ERK1/2 [120].

6. Conclusions

Several in vitro and in vivo studies have demonstrated the
ability of SF to prevent various neurodegenerative processes
that underlie stroke, traumatic brain injury, AD, and PD.The
ability of SF to exert neuroprotective effects in different acute
and chronic neurodegenerative diseases could be ascribed to
its peculiar ability to activate the Nrf2/ARE pathway. Nrf2
is a recent therapeutic target in neurodegenerative diseases
because it regulates several genes that have been implicated
in protection against neurodegenerative conditions [121, 122].
In this context, SF presents many advantages, such as good
pharmacokinetics and safety after oral administration as well
as the potential ability to penetrate the BBB and deliver its
neuroprotective effects in the central nervous system [123].
Based on these considerations, SF appears to be a promising
compound with neuroprotective properties that may play an
important role in preventing neurodegenerative diseases.
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